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ABSTRACT

An accurate and efficient method has been developed for

estimating the overlap effect due to the neighboring resonances

of the same spin sequence in the unresolved region. In con-

trast to the previously developed method, the new method is

capable of Lea-Ling practically all energy regions of interest

in the fast reactor applications. The Dyson's correlation func-

tion is used to account for the proper correlation of levels.

In the numerical calculations, the exact Doppler-broadened line-

shape function is used. The method has been made economical for

routine calculations in the fast reactor applications.
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I. INTRODUCTION

Extensive studies on the role of the resonance overlap effect in

fast reactor calculations have been described in previous work 
1,2 

A

rather crude method was proposed for estimating the overlap effect of

neighboring resonances of the same sequence in the unresolved energy

region. This early method is believed to be reasonably accurate in the

energy region where resonances are strongly overlapping. However, it

becomes questionable in the relatively low-energy region and for the

cases where the "equivalent" potential scattering cross section becames

small. These are the situations that one must face in the analysis of

Doppler-effect experiments and of heterogeneity studies for critical

assemblies. The significance of the overlap effect on the temperature

dependence of the Doppler coefficient under meltdown conditions where

the extremely high temperature of the fuel pin may be accompanied by

spectrum hardening due to the loss of sodium must also be realized.

Under this condition, even the well-separated 238U resonances become

strongly overlapping. The accurate estimation of the overlap effect is,

therefore, important in fast reactor safety studies. Some preliminary

results concerning this problem have been given in previous work. 3 Hence,

an accurate estimation of the overlap effect is desirable.

The purpose of this report is to describe a newly developed method

for estimating the overlap effect due to resonances of the same spin

sequence in the unresolved energy region. Improvement on the earlier

method1 ' 2 has been made in three general areas. First of all, the exact

Doppler-broadened line-shape function (c ,x) is used instead of the

approximate Gaussian form used previously. Secondly, the new method is
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made applicable even in the relatively low-energy region and for cases

where the equivalent scattering cross sections per absorbing atoms a
eq

is small. The assumption that 4(13,x)/(3]<‹ 1 used in the previous method

has been avoided. This assumption obviously breaks dawn whenever

[11,(3,0)/13] < 0. Finally, the Dyson's correlation function 4 for levels

is used instead of the rather crude approximation used in the previous

work. 1,2 The use of the approximate correlation function described pre-

viously was found to underestimate the overlap effect in the high-energy

region.5

The analytical and numerical foundations of the proposed method are

described in detail from Section II through Section V. In order to test

and evaluate the merits of the proposed method, a code has been developed.

Section VI describes the CHOPSUEY code and its computing time required

for calculations of practical interest. The listing of relevant subrou-

tines are also given.

II. FORMULATION OF THE OVERLAP TERM

If the NR-approximation and the "nearest neighbor" approximation1'2

are assumed, the overlap term for a given process x due to the resonances

of the same sequence can be written as

3-1-

where AK. is the ratio of the peak cross section of resonance k with

respect to a given resonance k and (D) is the average level spacing.
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The brackets ( ) indicate the statistical average over the distribution

functions of the resonance parameters of both k-th and k--th resonances.

The correlation function 2(6) is the probability that any k--th resonance

will be found at a distance of 6 = E
k
 - E

k' 
from a given resonance k.

For our purpose, Q(6) is taken to be Dyson's two-level correlation

.	 4	 5
function.	 '

Q(y)	 =	 1	 Is(y)1 2 +	 3s(Y) (2)-	 si(y)	 ,
dy

where

11 1 E k 	 Ekd (3)Y

sin	 IYI
s(y)

(4)

(5)

and the sine integral si(y) is defined as

f sin t
=	 dtsi(y)	 .

Equation (1) involves multiple integrals. A direct numerical

approach is believed to be extremely time-consuming, if at all practical,

for routine design ralculations. Equation (1) can be simplified con-

siderably by series expansion.

Note that the integral can be expressed as

4)(	 	 Akk	 I	 bk" 	AOk'Pk' 
	  dxk =	 +	 .

k Bk 	 Ak4k'	 6	 IP	 6	 [k	 )2k	 k	 k'	 k'	 k'	 k

3-1-
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provided the resulting integrals are uniformly convergent. The substi-

tution of Eq. (6) into Eq. (1) gives

0
x
 = K 1 - K2 + • • *,	 (7)

1 =	
2 ( j)

k	
- LI '( D)	 xk	

)k"

where

K1 (8)

dxk
k 

I: kk

1  /	 eq
K2 =

(D)2 \:rxkl k	 013 3creq

Jr (9a)

- L2 9
	 ( 10)

/3 1( J-0:, 13k	 k

xk
T
xk 2	 +

(12)
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and

W[a	

1 - S-211
1(1))j

For cases of practical interest, the series in Eq. (7) is uniformly

convergent on physical grounds. In contrast to the series expansion used

in the previous work, it is clear that the terms in Eq. (7) will converge

more rapidly even in the relatively low-energy region. In the region

where the previous series expansion is valid, Eq. (7) is equivalent to

the inclusion of many terms in the previous expression. In the high-energy

region, both expressions become identical. The rapidity of convergence

of Eq. (7) depends on the degree of the self-shielding effect of the

given isotope and the ratio of the average level spacing and the Doppler

width in the energy region under consideration. Note that (T x1) defined

in Eq. (12) represents the degree of self-shielding effect and is propor-

tional to 1 - E where s is the self-shielding factor

(rx

	

(\rx2k7/4
	  "k) •

In fact, for practically all problems of interest in the unresolved region,

the self-shielding effect is relatively small and (r )c is generally much

smaller than (r J) . From Eqs. (8), (10), and (13), it is obvious that
xk

K1 >> K2 if the self-shielding effect is relatively weak. A similar argu-

ment can be made to show that the higher-order terms are also small. It

is generally true that the resonance sequence with large average spacing
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will tend to have a stronger self-shielding effect in the low-energy

region. It will be shown in a later section that one seldom needs to

retain the higher-order terms beyond K2 and all Kn terms become identi-

cally zero when the average spacing (0 becomes much larger than the

corresponding Doppler width and the average total width.

Since the J-integral and other related integrals can be readily

evaluated using the algorithm proposed previously 
,6 

the main task here

is to evaluate the integral L I . Once L I is known, L2 can be evaluated

quite readily as one will see.

III. EVALUATION OF LI

L I defined in Eq. (9) is still too complicated and a direct numeri-

cal approach will undoubtedly require excessive computing time. Further-

more, W(6/(0) involves oscillatory functions which are highly undesira-

ble for quadrature formulas. The problem can be resolved by the use of

the Fourier transform technique.

A. Technique of Fourier Transform 

Define a function P
k
(E) such that

1	

+

c'	 dx
k -	 )1(	 	 .P

k	 =
W2u

131(	 4): k 
+

k

The Fourier transform of W((5/(D), say w(E), is4'5

-7
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Fran the convolution theorem and the Parseval theorem,
7
 it can be

shown quite readily that

Note that the quantities inside the brackets are the statistically

averaged values over the appropriate distribution functions of resonance

parameters. The same subscript can be used for the two averaged

quantities.

It is interesting to note that F k
(E) is the unique solution of the

following integral equation

2
/e	 - 1E-ti

kPk (E)
Pk(t) dt = /77T e- c2/4 - 1E1 , (18)

where the function on the right-hand side is simply the Fourier transform

of the tp-function as described in Ref. 8.

Before attempting to solve these integral equations, it is important

to realize some analytical characteristics of Pk (1"k U2). First of all,





(19)
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Pk(rkE/2) is an even function so that P k (F k c/2) = Pk i-rkV2). Secondly,

in the limit of large fi k , Pk (F k E/2) approaches asyptotically to

A
p	 exp - 

2

— E 2 —	 kl
2	 4	 2

where A is the Doppler width. Thirdly, in another extreme Where rk is

large compared to 6, 4, becomes Lorentzian. As a result, Pk(FkU2)

approaches

2	
	  exp [ rk

Bk

rk El +	 1 

\k 1 6k +
	

2

according to Eq. (15). Of particular academic interest is the fact that

Eq. (20) yields

(20)

1sinh z 
1	 exp(-z)

r )1s k (13 11, + 1) Ais k ,( a k . + 1) lz

- Ei(-z)[cosh z 
sinh 	

k&k"

	 (20a)

where - Ei(-z) is the exponential integral, and

[

z = -J-T- r
(D)	 k	

k 

13 k

	+ r
V-

\ lik' + 1 

0.k

i3 + 1

It follows that

2	 (20b)
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k _xi6k(ak 4. 1) k	 1) 0

0 (z)	 ,	 (20c)

k&k -

K1 -

Y = (22)
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where 4 0 (z) is identical to that derived by Moldauer9 for the correction

term of the fluctuation in the reaction cross section based on a completely

different physical argument. This signifies the s Liung analogy between

these overlap correction terms.

The characteristics defined by Eq. (19) and Eq. (20) provide sure

clues on how (F)kPk ( rkV2)) and (( r k /2)Pk ( r k U2) vary as functions of E.

This information is extremely important in the subsequent construction

of quadrature formulas.

With proper normalization, Eqs. (17) and (18) can be evaluated quite

readily using Gauss-Hermite quadratures. Define a new variable

n = ct	 ,
	 (21)

where a is set to be

a =	 -1/(0\ /-0 2 + (4 2 /2) + y2

and

Equation (17) becomes
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rkn
kg2(ni)Pkr—
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i
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ni/a

1 	 1	  r
L I -	 a./fT w

a 2(D) 2 i=i 1

where

g2 ( n 1 ) =

k

2

exp

g2Clijrk

f	 ),

'
( 2 3)

(24)

2a

4a2

-

g 1	 n 1 ) exp Y21 (25)

a n - 2 n-i n! 	 /T
(25a)

n2E-1
n-1

(nn

2

RN

N! AT (2N)

f	 (Y)	
(-'a < y < .) (25b)

2N (2N)!

and n i is the i-tii zero of the Hermite polynomial H(n) and f
(2n) (y) is

the 2n-th derivatives of the integrand. Here, the purpose of Changing

the variable is to ensure that the integrand varies slowly as a function

of n in order to make the Gauss-Hermite quadrature highly efficient

regardless what values of (D), A, r k , or ak are. Similarly, the inte-

gral in Eq. (18) can be replaced by the Gauss-Hermite quadrature so that

the resulting equation assumes a matrix equation of the form

AP = B .
	 (26)
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By normalizing each row of the matrix element of A to its diagonal element,

one has

3-1-

a.

g i 	 g2 (n r k exP
4a	 t	 3

A 2	 r
k

n.n. -	 In. - n.
202 

13	 2a	 1

for i	 j	 (27)

and

A..	 =1] 1 for i = j	 ,	 (27a)

where

No = g2 (n i )	 • ak

a.F
1k ( 2 8)

g3 ( ni )4a

g 3 (n i )

B i

=

=

[2(n i )-_] 2

/177	 e_

[

•	 gi(ni)

r

-,

n.1

(29)

(30)(30)
2 a

Hence, the quantities Pk (F k n i /20) needed for Eq. (23) are just the solu-

tion of a system of N equations. An efficient matrix inversion routine

is needed for this purpose. The matrix A can be further simplified by

partition utilizing the symmetric properties of P k . The detailed dis-

cussion will be given in the next section. It should be noted that the

normalization of the matrix proposed here is extremely important from a
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numerical point of view. This ensures that the coefficients of each

linear equation will not have vanishingly small magnitudes simultaneously.

From Eq. (23) and Eq. (18), it is clear that the Gauss-Hermite

quadrature is most efficient and accurate when the Doppler width is

larger than or comparable to the average spacing and the average total

width. On the other hand, the Gauss-Hermite quadrature is less efficient

when A becomes small. Under the latter condition, P k (F kU2) approaches

the exponential form defined by Eq. (20). From a practic xal point of

view, the proposed quadrature is highly desirable because it yields accu-

rate values for cases with large Doppler width where the relative impor-

tance of the overlap effect is high. For the cases with small Doppler

width where the overlap effect is less important, the accuracy of the

3-2-1

results is less critiral. It was found that a 10-point Gauss-Hermite

quadrature is sufficient to give accurate results.

Since the matrix inversion of a relatively large matrix is generally

time consuming, it is, therefore, desirable to optimize the proposed

method to suit the routine application.

IV. ECONOMIZATION

The proposed method can be made more economical in two general

areas: (1) in the region where 8 k is much larger than tp(0 k ,0], the

matrix inversion can be avoided completely; and (2) in the region Where

the matrix inversion is necessary the matrix A can be partitioned into

four submatrices of the size N/2 x N/2 where N is chosen to be 10 or any

even number. The symmetry properties of P k (fkn i/25) can be utilized.
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ek
1. As	 qek'CI)

ymptotic Region 	 > 2.5

As discussed previously, 6 the quantity k' [8k + tp k) can be represented

by a uniformly convergent series

tbk	 - 11) k)	(31)

	

k + k	ek	 P	 P)2

where the parameter p can be chosen so that the resulting integrals con-

verge rapidly. One way of choosing p is to set

P =	 - 1 44VT e
k'

0) .

	

I	 dx

f-o 
2
k dx

2
	 (31a)

By substituting Eq. (31a) into Eq. (15), it can be shown quite readily5'8

that

p	 E
j 	

/n/2 exp -	 E2 -	 kl • Q(E)

r 

2 —	 4	 2

r,

p) 4- • •	 ( 32)

where
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+ Erfril
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Erfcr
2/T

e l	 +	 1expr2C2
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w(0	 exp
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and Erfc(x) and Erf(x) are the complementary eiror function and exiur

function, respectively. These functions along with 4(y,0) can be

evaluated by using the exceedingly efficient rational approximation as

.	 10
suggested by Hastings.

It is interesting to note that Eq. (31a) serves dual purposes. First

of all, it implies

Qk (0) = 1	 (33b)

according to Eq. (33). Secondly, the magnitude of the next higher-order

term at 6 = 0 assumes a minimum value as readily seen by differentiating

with respect to p. Since L0(0 defined in Eq. (16) is a rapidly decreas-

ing function of 6 and varies approximately exponentially

the choice of p in Eq. (31a) amounts to minimizing the elrur involved by

ignoring the next higher-order term and maximizing the range of validity

of Eq. (32) in evaluating L I . It was found by numerical experimentation

that the validity of Eq. (32) when used in evaluating L I can be extended

down to





(3k	 4)(81('°) 	
>	 2.5 .

'qek'°)
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Approximately 75% of the s-wave and practically all of the p-wave

unresolved resonances of the fissile isotopes belong to the asymptotic

region. Since Eq. (32) avoids the use of the matrix inversion routine,

it represents a significant saving in computing time especially when the

fissile isotopes are considered. For fertile isotopes, the asymptotic

region for s-wave resonances is much smaller than that for fissile iso-

topes even though practically all p-wave resonances still belong to this

region. It should be noted that, in the absence of the fission-width

distribution, the computing time is generally negligible even if the

matrix inversion method is used for all mesh points.

2. Non-asymptotic Region

Outside the asymptotic region, accurate calculations can be made by

using the matrix inversion technique. Since all quantities inside the

summation sign of Eq. (23) are symmetric with respect to n i = 0, only
N/2 terms are needed. However, the kernel that appears in Eq. (18) is

not symmetric with respect to the variable of integration. Hence, it is

still necessary to invertaN x Nmatrix even though only half of the vec-

tors Pdn•) are needed in Eq. (23). The inversion of a matrix with rela-
tively large dimension generally requires an excessive amount of comput-

ing time. One way of minimizing the computing time required is to reduce

the size of the matrix analytically beforehand. This can be done quite

readily by partitioning the matrix A into four submatrices.

Assume the inverse Ai -1 = E . It is clear that



1 .i



(34)

18

=I ,
E 1 1E12'

AA -1 =
A2 1A22 E2 1E22)

where I is the identity matrix. Since the Gauss-Hermite weights and mesh
points can be arranged in such a way that

All	 =	 A22 (35)

A21	 =	 A l2

it follows from Eq. (34) that

-1

(36)

E ll	 =	 - A l2ATi A l2i (37)

-1
E 12	 =	 -A llA l2 E22 (38)

E22	 =	 E ll (39)

E21	 =	 E 12	 • (40)

Hence, in the actual numerical calculation, only two N/2 x N/2 matrix in-

versions are necessary instead ofaNxNmatrix. Since the computing

time required for the matrix inversion approximately varies as the cube

of the dimension N, a considerable saving in computing time may be

achieved if the computing time for the additional matrix algebra in

Eqs. (37) and (38) can be minimized. Once E ll and E12 are known, the

vector P is simply





(0 2	 k 2	 k
(41a)

B1
B2

P	 (EllE12)

B
N

Further economization may be made on physical grounds. In the low-

energy region where the average spacing becomes much larger than the

Doppler width and the average natural width, AO in Eq. (17) approaches

a Dirac delta function and L / becomes

19

(41)

The quantity K 1 vanishes. Similarly, the higher-order terms will also

vanish. Hence, it is possible to set K n = 0 whenever (D)/A and (0)1(1')

become larger than certain values. The proposed method was found to be

sufficiently fast that the latter condition for the limiting case is not

needed.

V. ESTIMATION OF L2

The second-order term L2 can be estimated using the same technique

discussed previously. Equation (11) can be written as





{	 expE(p2E2/14) (rkW/2)]

klw

/TTT- w()L2
	 1

2(02

2o

= pi • exp 	 1

[.

4a2
V.

1
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(
a(eq) 	 d 	 Fk

2	 P	 d0(eq)'-k- 2
.	 (42)

It is interesting to note that the only unknown in Eq. (42) is the quantity

r
k

da (eq) Pk[
	')
2

The latter quantity can be related to P k irk E/2). Let

R = _ o(eq) 	 	

1P	 3a(eq)	 2

Differentiating Eq. (18) with respect to a l(p eq) and replacing the inte-

gral by the Gauss-Hermite quadrature, one obtains a matrix equation of the

form

AR = V/No	 (44)

and

• r3k
	 (44a)

—

where Pi is simply the solution of Eq. (26), and N o is the normalization

factor defined by Eq. (28). Hence,

(43)





Rk [ 2k &I	 VTT/2 exp
A z 	 t,

4	 2
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R = A -1 V/No	 (45)

where A -1 has already been obtained in evaluating L I . Thus, the second-

order term can be obtained readily once the first-order term is known.

For the cases where the asymptotic formula is applicable, R is

simply

{1 + 2P - Uk (C)1/113 k + P

(46)

where P
k
 and U are defined in Eq. (32) and Eq. (33a).

The same technique, in principle, can be extended to even higher-

order terms. However, the evaluation of higher-order terms beyond the

second order is believed to be unnecessary on physical grounds. For

cases in the low-energy region where the self-shielding effect is large,

the average spacing is generally much larger than the corresponding

Doppler width and the natural width for all problems of practical

interest. Under such conditions, all K n terms vanish as w() approaches

the Dirac 6-function.

VI. CHOPSUEY CODE

In order to test and evaluate the merits of the proposed method, the

CHOPSUEY code has been developed. The code uses the input and output

routines of the RP-270 code written by 
R5g011 

with modifications to allow

for both s- and ip wave resonances. Ten quadrature points were used for
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both the neu	 vun width and the fission width distributions. The fast

J-integral routine developed recently 6
 was incorporated. The statisti-

cal averaging and the calculation of the overlap terms are performed in

the subroutine UNGRES and UNRES for the fissile and fertile isotopes,

respectively. The effective cross sections for both s- and p-wave con-

tributions are given separately in the output. In these subroutines, the

average quantities ( F xJ), (r7),(1', f; [00 +	 dx) and

(r fo 4/(13 +	 dx) are calculated first. In the calculation of

Pk ( F k y2), the code examines whether the k-th mesh point belongs to the

asymptotic region or not. For the points that do not belong to the asymp-

totic region, a matrix inversion routine is called. The matrix inversion

aroutine was written by Grbow 12 using the Jordan method. A FORTRAN list-

ing of the relevant subroutines are listed in the Appendix.

One of the great concerns is whether the proposed method is efficient

enough to be economical in routine applications. Test rAlculations have

withbeen 238PU and 238U usingmade for problems th	 ENDF/B parameters. For

fertile isotopes, computing time is generally negligible. The most

severe test is believed to be the case when 239PU is in high concentra-

tion. In the calculation of 239 Pu cross sections, not only the averaging

over the fission width distribution function is required, but also there

are as many as 30 energy points for all five spin sequences. Two cases

at room temperature were considered in the test calculations.

Case 1 

239pu: a (eq)	 71.6/atm

238u:	 (eq)o 	 = 40 b/atm
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Case 2

2 39pu, o(eq) = 300 b/atm

238u,	 a (eq) = 30 b/atm

It should be noted that the calculations require much less tire at

higher temperatures as more entries to the asymptotic region become evi-

dent. Table I summarizes the results of the computer time required for

the proposed method as compared to the time required for the old MC2

.	 13
routine (Subroutine QFJ) without the overlap effect. The time esti-

mates given in Table I include the input-output time as required by the

CHOPSUEY code but exclude the compilation time and wait time.

From Table I, it is clear that the proposed method is much superior

to the old subroutine not only on the theoretical ground but als in

terms of the computing time. The significant improvement in the algo-

rithm for evaluating the generalized J-integral discussed previcusly 6 is

more than enough to compensate for the computing time required for the

more rigorous treatment of the overlap effect.





TABLE I

Timing of CHOPSUEY

sec

MC2 (QFj)
(no overlap)

120

Proposed algorithm
(overlap included)

Case I 47

Case II 28

24
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SU B ROJ I TNE uNGREs
rPLIcIr REAL * o (10-.01,0-Z)
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EIMMON/TRTI/TRI62,62),T1(62,62),AIMW/AXYKEW,WHYAKI
C1JMMUN/H/TE5T1,1EST?PHN
CLiMMLN/SEC/TUT3,L1"4
rUMMON/t:/AKI,OEN,AT,C,AAA

CLMM O N/K/ EERFC/ANG
CJMMUN/PP/ LL,LP/MU0NCSYIGEOI.,NU,NOVLP
C .MOIUN/DP/ X,	 -.JPGV,NZ,C,,TAW:R/AZFRO00,C4AABAR/S100/D-LERDA
ATITLE,	 C3/CC/Y,UNRGM/JNR(YC1,(72YRADPFLUXCI,CAPAFIS5,SICP
DiMENSIJN X(10), FA100),UNR(100),TITLE(12),Y(10),UNRGM(100)
loHRo(100)	 roP	 8
DIMENSION XXX(1),GAI11),GP(10)
DI M ENSIJN A(10, 1 0/,B(10,100),E1(201,E2(0),AVCGMT(20),4VM .IT(20) A

AA;0TMT(20)AUUMIAY(10,1001,51(20)1E3(20),E4(20)

DIMENSION FLUXCII100//CAP1100/AFISS(100)	 OUP	 9
DIMENSION YY(10)/410(10)	 r.DOP	 11
DIMENSION GGF(10),Gr.M(100),TZETA(100)oPPSIZ(100),HI100/,GGFrAI0D)
Ap6GMM(100),68(1iA)ftoB8(100)
DIMENSION 0UN1(.01.0)PaNM2(5/5)pOiM3(5,5),DUM4(5..5),0Ukb(5,5).
ARP(10,1)YVECT(10,1),05(5,5),S(5,5)
DIMENSION VECT211,A,DUY2(10/109),ANORM(10),BING(10)/3I0F(10),

XRINT(10),AVT111',/
DIMENSION T1ZETA(100)
DATA	 Yri3.436119118,2.D3273167401.756653649,1.036610829,
A..3429013272,-3.4315911b.-2.532731674,-1.756683649,-1.036610R29,

X-.3429013272/
DTA WW/.764043?9')5D-.5...13436457461-20.33874394450-1).24013661101
X.o1015626337/.76404326550-)P.13436457460-2,.33874394450-1,.24113661
A1A.61086Z6337/
DATA E3/.11421382'10b,.6107756653D3'.21d879759502.0.2929719$7601,

x.1124773u9201/
nu 2 1=I/NCS	 ')OP	 32

READ	 .L00,5I001,SIGM2AIMGMAGMF
100 FORMAT(.5112.5)	

n1(013P	 33‘;SIGP=C4+SIGM1+SIG2
CF1ARJ=0.	 POP	 36

	

COP	 376AR.170.
Ti-,4RJ=u.0	 )OP	 38

INARJ2.0.

SFG.u.
SEF=0.
SLT=0.
F=0.
FF=0.	 'OP	 76

F]=0.	 ,OP	 77

F2=0.
cl2=0.

SKF.DSGRI(E(1))
DELI1N=C3/SRE/2.	 lOP	 40

11=0

AVIND=0,
AvINUF=0.
A4INDT=0.
4'40=0.
Ti.TLEFT(OD)





A-2

r' 0	 1	 J=1,10 00P 41
I 1 (L P .NE.0)GO	 f,1	 344 noP 42
GN(J)=GoNz	 *SRE*X(J)
GO	 TO	 911 DUP 44

944 tAA=RAD*SRE/4.560+2
11U*NU nOP 46
q=7NU*AAA**2/(1.+AAA**i) noP 47
I 1 (N u .G1.1)6u	 16	 499 noP 48
GN(J)=GMNZ	 *SRE*X(J)*V
SU	 1Li	 911 nOP 50

999 XXX(I)=5.175533E-2 OOP 51
XXX(2)=1.630645,:-i ciLiP 52
XXX(3)=2.884221F-! 0UP 53
XXX(4)=4.31/(43E-1 GOP 54
XxX(5)=5.99217a(-i loP 55
XX(6)=8.005(3E-1 GOP 56
.'X( 1)1.U5324+ •1OP 57
P,X(8)=1.393041 r)oP 58
XXX(9)=1.916293 2OP 59
XXX(10)=3.301585 nOP 60

GN(J)=60N2	 *SRE*X0C(1)*V
911 flU	 1	 K=1,10

F(K)=Liiit-*Y(K) flOP 63
G4,M=GN(J)+GF(K)-1-G,IGM COP 64
ZETA=GAo*UELTI
SIGZ = 2.6t6*G*6N(J)/	 E(1)/GAM
8E7A=SIGP/S1G7 qOP 67

A4INO=AVIND+1./oE14
AvINUF=AVINUI-4-6F(K)/EETA
AINbT=AvINOT+GAM/BL%.
APAU=GAN*OSURTUB.JA+1.)/BETn)

A',Q=AVQ+AAAU
CoLL FH
FJF=FOT2
r.JF2=707-.3
1(NUVLO.NE.O.)60 TO 6
79AKJ2=7BARJ2+FJ1-2*GAM
7FST1=(ETA+PSI7)/PS17

1F(TFS71.GE.2.5)G	 7r1 5
II=11+1
8HB(II)=BETA
GGFF(11)=GF(K)
GUMM(11)=GAt,
TIZETA(11)=7E7A
GU 1U 6

5 J.J=JJ+1
BLAJJ)=6E7A
GGF(Jj)=GP(K)
GuM(JJ)=GAM

TiETA(JJ)=ZETA
11-(1EST1.GE.4.5)G. 1 70 29

ARG=.7071(16781*LEFA

CiLL RATNL
IDS11(JJ)=.6266573686*ZE1A*EERFC

1-1Z2=PP517(JJ)
29 BPP=BETA+PSI12

PPSIZ(jj)=PS17.2

HiJJ)=Bpp
6 7BARJ=76ARJ+FJF*GAM
RARJ=BARJ+FJF noP	 73





A-3-
DO 741 GI4RJ=61-6AR,I+FoF*GF(K)

IRJ=.01*eARJ*GIIGla
Gi-EkARJ=.01*GFaARJ/D
T°ARJ=.01*TBARJ/D
I I-A NO VL P .NE.0.)U0 Tj 709
AVO=.014,A,;()
AvIND=.01.57079632;*AVINO*GMGM/D
PRIN1 730,AVINU,AVO

730 FURMAT(7H AVINO = Ui2.5,5H AVQ=012.5I
A'GABB=AV(.,
PRINT 5I,AVGABb

51 FURMAT(dH Av6ABLk=i12.5)
POIN1 6,II,JJ

6 FURMAT(4H 11=16,4u ,J=I6)
T=ILEFT(0D)
7!j=(71-12)*.01
T.3=1L17-1(0(1)
nAR1NG=hVIND
IIAPINF=.0157079637*AVINDF/D

PIN1=.015707963:I7,1,AVIIIOT/D
"N,ARJ2.01*T7R„2/7)
9.1=TBA,tj2
SLG=(VAA1NC-BAR04,02
SrF=7N4'7,INF-GF6ARJ)*I1/
St-T=(EA.4.1NT-TBAKJI*L12
PIN) 9151,SEG,.1U-,SET,D2

9151 FIAMA1(6E12.51
ALP=OSURT(.5/PELTtr,**2+p,*.318309)**2+4VGABB**2)
DIA 36 M=1,5
SI(N)=DA6SCYY(N)/,-4.P)
AG1=51(N)
E4(N)=0EXP(.5*(.54ARGI/OLLTIN)**2/
E2(N)=E4(N)*E4(N)
E1(N)=E3(N)/(E2(N)*E2(M))
Fl(N+5).L1(N)
Ei(N+5)=62(N)
L3(N+5)=E3(N)

36 CLINIINUE
I(II.L..i.0)GO TL,
90 33 J=1,11
Dij 11 N=1,5
'IRG1=5I(N)
6(Nrs1/=1.2533156,*iExP(-.5*GGNM(J)*A(G1)
AhCRM(N) = E2(N)*(38(J) +4W(N)*E3(N)*.25*GGMM(JI/ALP)
RP(i7,1)=1(N.JI/ANJRM(N)
'I1)(N+5,1)=ST(N,1)
AORN6,1+5I=4NTIRM(-1)
DU 11 K=1,10
IF(N.EQ.K)GLI TO lin
A'74,K)=.25*WW(K)*tl(K)*DEXP(.5*(1./DELTIWALP1**2*YY(N)*YY(10-

)0mRs(Ny(N)-sry(K))4.5*GGMM(J)/ALi,)/ALP/ANOR(N)*E2(K)*GGw4(j)
iD 111

110 A(N,K)=1.
1 11 1,-(R.(„1.5)60 TO 112

SlN,KI=A(NrK)
IiuM5(N,K)=A(N,K)
Gu IO 11

112 11.,MI(N,R-5)=A(N,K)
CUNTINU6
CALL t,AiRIX(S,GTEPH,5)





utA 7, n=4,,P	 AJ-b
DO 93 L=1,5
01.413(MPL)=0.
(1) 92 N=i,5
num2(K,1 )=O.
DO 91 K=1,5

91 1),M2(N,L)=DOM2(1,,...).1.5(,,,K)*UOM1(K,1)
92 DoM3(M,L)=D0m3(i,;,L)+01P11(M,N)*0002(N,1)

DoM4(11,0=00m5('•i,L)-PUm3(M,L)
93 CUNT1NOE

U. L1 KArKIX(D1M4,0EIEK,51
DI, 73 M=1,5

VECT(M,))=0.
1U 75 N=1,10
ii , (N.GT.5)GO TO 74
VEC1(M,1)=VECT(m,114.N.o.14(M,N)*,u)(N,1)
DuM6(m,A)=o,
0N 71 K=1,5

71 00M6(M,N)=O0M6(,,I+OU!'.2(M,10*DO14(K,N)
WA1(M,N+5)=-0W16(1',,t.1
GU 113 75

74 \li.C1(t1,1)=VECTO,11+00\11(M,N)*RP(N,1)
75 CLNI(NUE

3OMMY(M,3)=VECTIM,1)

73 GL!NT1NOE
rq l 76 M=1,5
aC12(M)=o,
n ,J 77 H=1,10
IF(NeGT.)GO TU 7.1
VeCT2() = VELT2(^, ) 4.01PO4(0,N)*VECT(N,1)*E2(N)*Br3B(j)/6N1Rm(N)
GE . TO 71

78 VECT2(M) = VEC12(m) +0111(1,N)*VECT(M-5,1)*E?(N)*BRB(J)/4WIRM(N)
77 CoNT1Kiii

014Ms12(M,J)=VECl2(V)
76 CuKT1NOL
33 CONT1N(h

'To 34 N=1,5
•VGGM1(N)=0.
AvGFMT(N)=0,

AvG1mi(N)=0.
6VT1(N)=0,

RINC,(N)=0,
31rF(r)=0.
WIT(M)=0.
MI 34 ,J=1,11
8VGGMT(N)=A1/6GMI(4)+0011Y(N,J)*E2("0
AVGFMT(N)=AVGFMICj+DOMMY(N,J)*2(.1)*GGFF(J)
AVGTMI( )=AVGTMr( ;i)+OOMMY(N,J)*E2(N)*GGMM(j)

BING(N)=8ING(10+8(r,,J)/8013(J)
UNF(N)=UINF(N)+B(I'.,J)*G6FF(j)/OBB(J)
8INT(N)=INT(N)+8(N,j)4(GOMM(J)/69B(L)

AVT1(N)=47T1r.4)+0JMMY2(NAJ)*E2(M)#GGMM(J)

34 ZiNlINUE

7 DU 3333 m=1,5
• A'CG.0.

AVGF=0.
AvG1=G.

TQ2=0.
AVGQZ=0.
AVFWZ=0.





--	 A-5
1 F (JJ.Ew.0)GU IL. 4

G151(m)
0C.=U*ARG1/3.1410
Dlim=.5*ARGliDELIVA/1.4142
ARG=00,1

CALL RA1NL
4i=E4(ml-EERFC
0=1.
:IL, 333 .1=1,JJ
TLST6= H(J)/po;Jz(j)
IF(TEST6.GE.25.)G . TI 223
ARG=UL1+12E1Ati)/1.4142
CALL RATNL
VuEERFC
J=.626658*TZETA(J)*(Al+A2)
0=1.+(PPSIZ(J)-L)/li(J)

;Ye.=(H(J)/IFI(J))-(1
03:(0-.5)*2.*Bli(J)/H(J)

223 EE1=DEXPt-.5*66m(:)*Aric,1)/H(J)
AvGG = AVG( 4-EE1*
AvGF=AVGF+GGF(J)*)*EE1
AvG1=AVGI+6GM(J)*4*E1-1
T I CrESTo.':,E.25./Gi Id 333
Av'GQ2=AvG02+Q2*EE1
AVF02=Avhij2+02*LEl*GCF(J)
AVN2=4V102+02*LEI*G1,m(J)
AvTG3=AVT3+Q3*tE1*GlIm(J)

333 CuNTINUt-.
11-C11.61.()GL) TL, 9
AVGGMT(hi=10.
AVC.FMT(M)=0.
AGTmT(i1)=0.
BING(t,0=0.

BINF(r)=0.

AVT1(1,1=0,
9 OvLG=.00,(A1i6G+AV,GmT(e)*.7978836)*CMGm

0VLF=.01*(AVGF+AN,FMT(m)*.7978936)
11vLT=.01*(AVGi+AVr1 or(M)*.7978136)
OVLG2=.G1*(aVGQ2+ .7978836*(BINIG(M)-AVGGmT(M)))*GmGM
OvLF2=.01*(AVFQ2+.797833b*(81^3F(1)-AVC;Fm1(m)))
rIA12m.J1*(AVT02+.7978936*(8INT(1)-AVGT1T(v)))
1,L13=.01*(4VTJ3+.7978b364,AVT1(o))

894 if-(QW.GT.2.)GLI id 498
F0VSUN=(1.-QQ+.5*(e4WLUG(1.4-00))
GL III 933

498 FoySUN=.)*CNI*DLLIG(l1.+1Q)/(00-1.»-1.
933 pur=WW(m1*0VLF*F0eSU*E1(m)*2./1)

FL,=FG+UvLG*DUP
Ff=FF+0,;LF*DUM
Fi=FT+09LT*DUM
qomm=w0(1)*0VLT3*PlYS01*E1(M)*2./D
FG2=FG2+UUMM*0VLG2
Ff2=FF24-01.4.1M*UVLF2
F12=F12+DUt*.*UVLT2

3 33 cur:riNUL
OVERLC,=(1-:;-F62)*.3927/4LP
1)vERLF-Fr2)*.3127/ALP
nvERLT=tET-FT214.3927/;Lo





OVERL:;
lvftGEFIARj*TBARJ-SEF-CVERLF
0vT=7BAR.14TEARJ-5LT-UVERLT
9k INr 9151,FG,P62,OVEKL6,FF.0-F2rOVERLF
1 1-(UV6.G1.0•; r1 7/ 14

709 0.!G=0.
9,7F=0.
911=0.

14 PRINT 701,0V6,OVF,OVT
761 FORMA1(5H 0vG = 912.5,5H UVF = )12.5,5H LO/T=D12.5)

PRINT 7o2,BARJ,GFfilk4J,T6ARJ
702 FdRMAT(oH BA i: E1,.5,8j GFBA P J=E12.5,7H T8ARJ=E12.5)

NkRGO(1)=UNRGm(1)+$16P*BARJ
r4=FLEFT(DD)
"fl0m(T3-14)*.01

OkMT
13 PURMA1(5H TTJ=E12.5,5H [1.0.E12.5)

W 'R(.;(1)=UNRG(1)+S1CP4'GF3ARJ

FL1ACT()7=1.-(T64,?J-CjT)
C.P(1)=.:4P())+51G7,*(HARJ-(JVG)/PLuKCT(1)
PiSS(I)=1-1SS(T)+51GP*(6BAPJ-OVF)/FLUXCI(1)

Z C,ATIOUE
RtTURN
F-n
SO8KUU11NE FH
1 I PLIC11 RE1L*6 (4-O,0-2)
Cf)MMON/TRTI/1.!(62,62),T1(62,62),AIMW,AX,REW,WHY,K1
CUMMON/H/TES11,1EST2,HH
c , NHON /QPJ1/LE-1A.TC12,beTA,PSIL,PSIZ2,P53
c,mm11 iw,0 EEC ' 4R6
cummuN/F/AKIAI,c,A44
cumhuNtstci1ur3,T,_.T4
r)imENslim zi.p(e)
DimElisioN RAT(10),AKIll nA,DEr(10)

0!4I rIN 4LP n 5)
IPMENSI,IN ANC 10),'M(10)
D,J4 AN/.166666/A.33333330-1,.7142g570-2,,I5871020-2,
X-46075040-3,.83Z5no80-4/
1ATA BM/.1666651,.55555550-1,.12345680-1).20575130-2,

A.2743484u-3,.3048:3160-4/
OijA ALP/.98460/7/30/.iio60254038y.6427676097,.3420201433/
').TA ZL P / 	 . 239315b6421.4647231720/.6631226582,.4229136658,

X.9350162426/.9927188/40/

Ugal
wHy=.54/EIA

Afz0=WW(
C A LL RAtNL
PSI2=.6862269*ZCTI.*EERF6

lisPE1A+F'S1Z
TEST1=H/PSIZ
AINTL=.5/TESI1
AS1=AAA*2
I f (TE511.GE.15. ) G ,! TO 100
P-(ZETA.GT.2.5)60 TO 20
1F(TESTI.C;E.4.5)W, TO 1U0
TF(bE1A.GE..01H)Gi TO 2

IF(211.‘ .GE..) Gu 10 20

IF(5OVPSI.GE..2)G I T n 2

Rk=4.*(1.8971+DLO(,(1.+./532929*ZETA/BETA))/ZETA**2

A-6

r,OP
OOP
OOP





T6ST2=L?B*F1E7A

P-(TES12.GT..03)GL TO 4
CA , lo 20

C=5./ZEfA
G . ; 10 3

4 I . ( l EST2.17.1.0)G1 TO 11

Fi,C=1.4-.018FiA-.00128)/(BETA+.00128)4.08*ROVPSI
C = .8192*DS ,JR1( ifil*FAC
(7,	 (II 3

11 c=.7071)c05010()3B+(1.+BEIA)/6E7A)
3 TLT2=0.

TUT3=0.
TUT4=0.
DO 1 1=06
AX=WI-h*LLP(1)*C/0.sQR1(1.-Z1P(1)**2)
CLLL
P!..1=.8862269*4E7A=REA
Al(1)=.t11862269*ZCTA*A1M4
1)EN(1)=0ETA+PS1
Ri,T(1)=PSI/nEW)/(1.-ZLP(1)**2)
TL1-3=10T3+Rai(1)*E1A/0P1(1)
AKISQ=A1(I)**2*ASU
TuT4=7(1T44.(4KiS(../(0i;M(1)**2-AkISQ))*RAT(1)

1 TUT2=T0f24,R;J(I)
7-1-.T2=TOrl+AINVZ
TUT2=TUT2*C*.2416609733
703=70i3+AIVT2*(1.-1./TES71)
T9T3=7073*C*.2416o0973
T174=7!)144,0*.241609733

i:,t7URN
100 AkG=.707106781*ZEIA

CALL RATNL
PSIZ2=.6266570666*ZETA*EERF1
Hri=bET4+Psiz2
rfl2=1.5707963268t/HH
10T3=10T2*BE14,PAH

Z=Z6fA*ZETA
If(LETA.1;r.2.5)G0 1023
AKG=.40d2482)*ZeTA
CLL RA n NL
Ps123=.7236021*ZEIA*EEkFC
S=0.
SUNi=0.
TLMP=1.
OU 22 1=1,6
TtNIP=TEMP*Z
SP4=SUm+B1(1)*TEMD
c=S+nN(A)*(SUm+.25)

22 CM1INLJE

5S+. 25
X=2.1(08037*ZLT*0EXP(Z/6.)

PS3=(PS1Z2*(3.*PS[Z3-ZEx)+1.5*Z*S)*1.5707963281
TO 24

23 N'ulH2=.6666666(*Z
El=(IWO11-17*(1411W+2.334733)+.250621)/(TWOTH2*(TwOTHZ+3.330657).-

A1.681534)
H1=1.-E1
Hz.1.5/2-H1
H3=5./(Z*ZI-1.1111111*H2
H4=26.25/(Z*Z*Z)-1.1666:)67*H3

A-7





PS3=.5b904862*El-(HI-H2+,13-H4)*.39269908

24 rU14=.333333300ASQ*PS3/(ro-i*HH*HH)
1 0 (1EST1.LT.15.)G i i IC, 33
RETUFt,

33 TIJ2=10T2.0(PS3-1,5122*PS1Z2*1.57079(+3281)/(HH*HH#HH)
TjT3=TUT34,11.43.*(.6365128374,P53-1,5122*P5IZ2)/(HH*HH))
ru14=.3333333*ASO*PS3/(1-id*HH*HN)
af:TURN

20 (=.7171*OSQ011(11.+BLTA)/3ET4)
T12=0.
T.J3=0.
TJT4=0.

nu 9 1=104
AX=WHY*LP11/*C00-(1.-ALP(I)**21
(" A LL 1.;OlCKW
P1=.85Z269*ZEIA=M:,4
AK1(1)=.8862269*IrTA*411,4

DEV(1)=3ETA+PS1
RAT n 1)=PSIVJEN(i)/(1.-4LP(1)**2)
TUT3=16t3+RA1(1)*iETA/DEN(1)
AKISQ.AKI(1)**2*A'A
ToT4=1014.0(t.KTYZ/(0EN(1)#*2-Ak13,1)1*R4T(1)

9 11)1-1=1j12.0RAT(1)
1W12=T012+AINTL
ToT2=7012*C*.3490J53504
173=1iT3+AINrV0(!.-1./TLST1)
13T3=TJT3*C*.3490-..:50504
T..14=11314*C=.349058504
4ETORN
Eql)

A-8
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